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TODO: add examples for everything 
Instructions 
ISA - instruction set architecture - instructions implemented in hardware that software can use 

ex: x86, MIPS, ARM 
processor microarchitecture - hardware implementation of ISA 
 
R-type 
opcode | src operand | src operand | dest 
ex: add 
 
I-Type 
opcode | src operand | dest | constant 
ex: beq 
 
J-type 
opcode | addr 
ex: jump 
 
-more registers => larger instructions 
-pseudo instructions - instructions that assembler expresses in terms of another instruction that 
hardware implements 
ex: 
not $src, $dest => nor $src, $src, $dest 
mov $src, $dest => addi $src, $dest, 0 
 
CISC - complex instruction set - variable length instructions 

-can implement more instructions at cost of complexity 
-ex: x86 

RISC - reduced instruction set - fixed length instructions 
 
immediate value - small constant embedded in instruction 

-pros: do not have to fetch extra values from memory or use up additional registers 
-cons: value fixed throughout execution, size limited 
ex: addi, branch offset 
++ptr => increment by small fixed amount => use addi 
if(a < b) min = a 
else min = b 
///jump over 2 instructions if a >= b => small offset => immediate value 

 
Problem: what if constant too large to be immediate value? 
Solution: 



load upper immediate 
lui $s0, upperbits => $s0 =  upper bits || 0 … 0 
addi $s0, $s0, lowerbits => $s0 = upper bits || 0 … 0 +  lowerbits = upperbits || lowerbits 
 
j <addr> - jump to address 
PC - relative addressing 

-most branches are to nearby instructions => offsets are small 
beq r1, r2, <offset> 

if r1 == r2 then go to pc + 1 + offset 
 
Addressing Modes: 
-Direct/immediate - operand in instruction (good for code like ++ptr) 

-address is constant embedded in instruction 
-good for accessing global + static vars 
load r1, M[1500] //address is constant 
jump 3000 

-Indirect 
load r1, M[M[3000]] 

-register - address stored in register 
load r1, M[r2] 

-base + displacement (good for indexing into an array) 
load r2, M[r1 + offset] 

-pc-relative - specify offset from next instruction - good for branches 
address = PC + 4 + offset 

-pseudo-direct - jump addr - upper bits from PC, lower bits from immediate value 
 
byte-addressable - every byte gets its own address ex: MIPS 
word-addressable - smallest unit of addressable memory is word 
 
Special registers: 

-stack pointer - points to top of stack 
-global pointer - points to start of data segment 
-status register - holds results of comparisons, overflow bit, misc data 

 
Comparisons 
slti $dest, $src, constant 

-set dest = 1 if scr < constant 
-constant is immediate 

slt $dest, $s1, $s2 
-dest = 1 if $s1 < $s2 

unsigned versions are sltu, sltui 
then use beq, or bne $dest, 0, offset 
 



Jump Table 
-for switch statements 
-value is index into table of addresses 
-n cases => if else if …. else is O(n) comparisons, vs O(1) for switch with jump table 
 
Endianess 
Given 32-bit value: b3 * 256^3 + b2 * 256^2 + b1*256^1 + b0 * 256^0 made of bytes b3, .. b0 
there are multiple possible ways to store the bytes. 
Big endian - highest order byte is stored first ie 

-order of bytes is: b3, b2, b1, b0 
-used by TCP/IP 

Little endian -  lower order bytes come first 
-order of bytes is: b0, b1, b2, b3 
-used by x86 

 
Two's complement - how to store signed numbers 
The bits: x = x31x30 … x1x0 represent X = -x31*2

31 + x302
30 + … + x02

0 

Properties: 
-First bit is sign bit ie: x31 = 1 => negative, x31 = 0 => positive 
-positive numbers are represented like normal (except they cannot use the first bit) 
-range of values -231  to 231 - 1 (note: one more negative value than positive) 
-to negate a number take the bitwise complement of the number and add 1 

− 2  x 2 ... x  2  x2 ... x   x + x = x31
31 +  30

30 +  +  0 − x31
31 +  30 +  +  0 = {1}32  

So   1 {1} 1 {0}  0x + x +  =  32 +  =  32} =   
=> − x = x + 1   
 
add, addi, … for signed addition 
addu, addu … for unsigned addition 
 
Overflow - when result of operation cannot fit into a word 
if positive + negative => overflow impossible 
positive + positive = negative => overflow 
negative + negative = positive => underflow 
-can occur with multiplication TODO: how to detect for multiplication 
 
Sign Extension 
Q: How to copy 2's complement number into larger block of memory while preserving its sign? 
A: fill in extra leading bits with the sign bit. (called sign extension) 
TODO: add proof of correctness 
 
Load Instructions 
lw - load word 



lh - loads half word 
lb - load byte 

ex: load character form char* 
lh, lb are signed loads ie: they sign extend the value they load ensure that the same 2's 
complement number is represented when the value is stored in a full word 
lhu, lbu - unsigned loads 
 
sh, sb - store halfword, store byte (signed and unsigned versions are the same) 
 
Data Layout 
-Processors access memory in blocks whose sizes are powers of 2. If multibyte value is split 
across two blocks, then multiple block have to be fetched to read that value => slower loads and 
more complex load implementation 
-solution: make sure primitive data-types are fully contained in a single block by enforcing 
address alignment 
Alignement 
-each primitive data-type has address that is a multiple of its size 
ex: int's and pointers have addresses that are multiples of 4 (for 32-bit systems), doubles have 
address that is multiple of 8 
-padding is added to previous variable to ensure that next is aligned 
 
Structures - composite data structure 
ex: 
struct Node { 

char letter; 
int count; 
Node* left; 
Node* right; 

}; 

 

Variable Start End 

letter 0 1 

count 4 7 

left 8 11 

right 12 15 

 
Want to be able to make arrays to structures while ensuring all values within structure are 
aligned. 
Could do: 



struct S{ 
char c1; 
int i 
char c2; 

}; 

0x00 s1.c1 s1 at 0x00 with size 9 
0x01 3 bytes padding 
0x04 s1.i 
0x08 s1.c2 
0x09 s2.c1 s2 at 0x9 with size 8 
0x0A 2 bytes of padding 
0x0C s2.i 
0x10 s2.c2 
0x11 s3.c1 s3 at 0x11 with size 8 
0x12 2 bytes padding 
0x14 s3.i 
0x15 s3.c2 
Problem: this messes up array indexing because elements are not all the same size. 
 
Solution: align structures based on the largest primitive element they contain and pad structure 
to make size a multiple of the size of the largest primitive element. 
-order elements in struct by size to minimize padding 
 
Function Calls 
MIPS 
$a0 - $a4 - registers to pass function arguments in (if there are not enough registers, then put 
extra arguments on the stack) 
$v0, $v0 - registers to store return value 
$ra - register that stores return address 
 
jal <target> - stores PC + 4 (the return address) in special register and jump to address <target> 
jr <reg> - jump to address in register 

ex: at end of function, jr $ra to jump to return address 
 
Stack - stores local variables and function call information 
-stores return addresses 
-if there are not enough registers for all local variables, use stack memory 
-if there are not enough registers for all function arguments, use stack for rest 
- "" return value, use the stack 
-$sp - stack pointer points to top of stack 

Memory Layout 
stack (grows downward) high addresses 
 



heap (grows upward) 
data 
text  low addresses 

-decrement sp to add values to stack 
-increment sp to pop values off of stack 

Stack Frame 
function parameters 
return address 
spilled registers //saved register values 
local vars 

-frame pointer points to bottom of frame - easier to refer to variables based on offset from frame 
pointer than offset from frame pointer 
 
Caller vs Callee-Save 
-functions share the same set of registers 

Problem: a function might modify registers that its caller is still using 
Solution: same values of registers on stack 

-caller save - the calling function saves register to stack before executing a function call, after 
function call, caller restores previous register values 
-callee save - each function saves values of registers to stack before it uses, at end of function, 
function restores previous values 
Q: which registers are caller saved? 
A: Specified by ISA 
MIPS 
$t0 - $t9 - temporary registers, caller-save 
$s0 - $s7 - saved registers - callee-save 
 
-functions often are in different files and are compiled at different times, one function might be 
called by many other functions => inter (between) function optimizations are too complicated for 
current compilers => only intra (within) function optimizations are made 
 
Which is better? 
Leaf function - a function the calls no other functions 

-caller save is better because no saves and restores are needed 
Liveness - a variable is live across a function call if its values is read after the call 
ex: 
f() { 

a = 1 
c = 9 
b = g(a, c) 
c = b + a //a is live because its value is used after the function call 

//c is dead because its previous value is not used after the function call 
} 



Caller save is better for c because it is dead across function call. 
 
double integrate(double a, double b, double dx, double (*f)(double)) { 

double sum = 0; 
for(double x = a; x < b; x += dx) { 

sum += f(x) * dx; 
} 

return sum; 
} 

For loop variables calle-save is better. (ex: x is saved and restored once for callee-save vs once 
per iteration for caller-save) 
 
Object Files 
-output of the assembler 
 
header - specifies sizes of following parts 
text - machine code for instructions 
data -contains values for initialized global variables and statics 

-two parts: initialized and uninitialized 
symbol table - lists globally accessible symbols 

-symbol, type 
-for globals, functions, externs 

relocation table - locations of instructions that depend on variables/functions in other object files 
-stores locations of instructions that use absolute addresses 
-in table: jump, lw <global/static>, sw <global/static> 
-not in table: PC-relative instructions (beq), add, addi, …, lw <stack or heap variable> 

debug info 
 
Linker - mergers multiple object files and resolves dependencies 
Object file 1, … Object file n 
=> 
text 1 
text 2 
… 
text n 
data 1 
data 2 
… 
data n 
=> resolves references, checks for undefined labels, updates instructions in relocation tables 
with finalized addresses of symbols they refer to 
 
Floating Point 



IEEE 754 Floating point 
-idea: use scientific notation 
Format: 
-|sign bit | 8 bit exponent | 23 bit mantissa| 
-base 2 => base is fixed => no need to store it 
-all base 2 numbers (except zero) begin with zero => implicit 1 before the mantissa 

-use exponent of -127 to represent 0 
-has +/- Infinity and not a number (NaN) values 
-floating point addition compares exponents => want exponent comparison to be fast 

-want to use fast unsigned comparison instead of slower 2's complement comparison 
-solution: represent exponent in biased base 127 

-represent x as x + 127 
=> exponent range: -127 to 128 

-Stored value represents: (-1)sign  * (1 + 0.mantissa bits) * 2exponent - 127 

 
Multiplication: 
-product sign is xor of sign bits 
-add exponents 
-multiply mantissa (remembering implicit leading 1) 
-adjust exponent if needed and normalize mantissa 
 
Addition: 
-shift mantissa of number with smaller exponent right while increasing exponent until exponents 
are the same (so bits with same order are aligned) 
-add resulting mantissa bits 
-if addition overflows, renormalize mantissa and update exponent 
(More complicated that this) 
 
-value overflows when resulting exponent is too large 
 
Finite State Machines 
-set of states 
-determines next state based on input and current state 
Moore Machine - output determined by only current state 
Mealy Machine - output determined by input and current state 
 
-can implement with two tables (details are depend on type of machine) 
Table 1: |current state | input 1 | … | input n| address| - address in index in table 2 
Table 2: |next state | output 1 | ... | output m| 

https://www.h-schmidt.net/FloatConverter/IEEE754.html





