
Adrian Stoll
EECS 370 Midterm Review

TODO: add examples for everything
Instructions
ISA - instruction set architecture - instructions implemented in hardware that software can use

ex: x86, MIPS, ARM
processor microarchitecture - hardware implementation of ISA

R-type
opcode | src operand | src operand | dest
ex: add

I-Type
opcode | src operand | dest | constant
ex: beq

J-type
opcode | addr
ex: jump

-more registers => larger instructions
-pseudo instructions - instructions that assembler expresses in terms of another instruction that
hardware implements
ex:
not $src, $dest => nor $src, $src, $dest
mov $src, $dest => addi $src, $dest, 0

CISC - complex instruction set - variable length instructions

-can implement more instructions at cost of complexity
-ex: x86

RISC - reduced instruction set - fixed length instructions

immediate value - small constant embedded in instruction

-pros: do not have to fetch extra values from memory or use up additional registers
-cons: value fixed throughout execution, size limited
ex: addi, branch offset
++ptr => increment by small fixed amount => use addi
if(a < b) min = a
else min = b
///jump over 2 instructions if a >= b => small offset => immediate value

Problem: what if constant too large to be immediate value?
Solution:

load upper immediate
lui $s0, upperbits => $s0 = upper bits || 0 … 0
addi $s0, $s0, lowerbits => $s0 = upper bits || 0 … 0 + lowerbits = upperbits || lowerbits

j <addr> - jump to address
PC - relative addressing

-most branches are to nearby instructions => offsets are small
beq r1, r2, <offset>

if r1 == r2 then go to pc + 1 + offset

Addressing Modes:
-Direct/immediate - operand in instruction (good for code like ++ptr)

-address is constant embedded in instruction
-good for accessing global + static vars
load r1, M[1500] //address is constant
jump 3000

-Indirect
load r1, M[M[3000]]

-register - address stored in register
load r1, M[r2]

-base + displacement (good for indexing into an array)
load r2, M[r1 + offset]

-pc-relative - specify offset from next instruction - good for branches
address = PC + 4 + offset

-pseudo-direct - jump addr - upper bits from PC, lower bits from immediate value

byte-addressable - every byte gets its own address ex: MIPS
word-addressable - smallest unit of addressable memory is word

Special registers:

-stack pointer - points to top of stack
-global pointer - points to start of data segment
-status register - holds results of comparisons, overflow bit, misc data

Comparisons
slti $dest, $src, constant

-set dest = 1 if scr < constant
-constant is immediate

slt $dest, $s1, $s2
-dest = 1 if $s1 < $s2

unsigned versions are sltu, sltui
then use beq, or bne $dest, 0, offset

Jump Table
-for switch statements
-value is index into table of addresses
-n cases => if else if …. else is O(n) comparisons, vs O(1) for switch with jump table

Endianess
Given 32-bit value: b3 * 256^3 + b2 * 256^2 + b1*256^1 + b0 * 256^0 made of bytes b3, .. b0
there are multiple possible ways to store the bytes.
Big endian - highest order byte is stored first ie

-order of bytes is: b3, b2, b1, b0
-used by TCP/IP

Little endian - lower order bytes come first
-order of bytes is: b0, b1, b2, b3
-used by x86

Two's complement - how to store signed numbers
The bits: x = x31x30 … x1x0 represent X = -x31*2

31 + x302
30 + … + x02

0

Properties:
-First bit is sign bit ie: x31 = 1 => negative, x31 = 0 => positive
-positive numbers are represented like normal (except they cannot use the first bit)
-range of values -231 to 231 - 1 (note: one more negative value than positive)
-to negate a number take the bitwise complement of the number and add 1

− 2 x 2 ... x 2 x2 ... x x + x = x31
31 + 30

30 + + 0 − x31
31 + 30 + + 0 = {1}32

So 1 {1} 1 {0} 0x + x + = 32 + = 32} =
=> − x = x + 1

add, addi, … for signed addition
addu, addu … for unsigned addition

Overflow - when result of operation cannot fit into a word
if positive + negative => overflow impossible
positive + positive = negative => overflow
negative + negative = positive => underflow
-can occur with multiplication TODO: how to detect for multiplication

Sign Extension
Q: How to copy 2's complement number into larger block of memory while preserving its sign?
A: fill in extra leading bits with the sign bit. (called sign extension)
TODO: add proof of correctness

Load Instructions
lw - load word

lh - loads half word
lb - load byte

ex: load character form char*
lh, lb are signed loads ie: they sign extend the value they load ensure that the same 2's
complement number is represented when the value is stored in a full word
lhu, lbu - unsigned loads

sh, sb - store halfword, store byte (signed and unsigned versions are the same)

Data Layout
-Processors access memory in blocks whose sizes are powers of 2. If multibyte value is split
across two blocks, then multiple block have to be fetched to read that value => slower loads and
more complex load implementation
-solution: make sure primitive data-types are fully contained in a single block by enforcing
address alignment
Alignement
-each primitive data-type has address that is a multiple of its size
ex: int's and pointers have addresses that are multiples of 4 (for 32-bit systems), doubles have
address that is multiple of 8
-padding is added to previous variable to ensure that next is aligned

Structures - composite data structure
ex:
struct Node {

char letter;
int count;
Node* left;
Node* right;

};

Variable Start End

letter 0 1

count 4 7

left 8 11

right 12 15

Want to be able to make arrays to structures while ensuring all values within structure are
aligned.
Could do:

struct S{
char c1;
int i
char c2;

};

0x00 s1.c1 s1 at 0x00 with size 9
0x01 3 bytes padding
0x04 s1.i
0x08 s1.c2
0x09 s2.c1 s2 at 0x9 with size 8
0x0A 2 bytes of padding
0x0C s2.i
0x10 s2.c2
0x11 s3.c1 s3 at 0x11 with size 8
0x12 2 bytes padding
0x14 s3.i
0x15 s3.c2
Problem: this messes up array indexing because elements are not all the same size.

Solution: align structures based on the largest primitive element they contain and pad structure
to make size a multiple of the size of the largest primitive element.
-order elements in struct by size to minimize padding

Function Calls
MIPS
$a0 - $a4 - registers to pass function arguments in (if there are not enough registers, then put
extra arguments on the stack)
$v0, $v0 - registers to store return value
$ra - register that stores return address

jal <target> - stores PC + 4 (the return address) in special register and jump to address <target>
jr <reg> - jump to address in register

ex: at end of function, jr $ra to jump to return address

Stack - stores local variables and function call information
-stores return addresses
-if there are not enough registers for all local variables, use stack memory
-if there are not enough registers for all function arguments, use stack for rest
- "" return value, use the stack
-$sp - stack pointer points to top of stack

Memory Layout
stack (grows downward) high addresses

heap (grows upward)
data
text low addresses

-decrement sp to add values to stack
-increment sp to pop values off of stack

Stack Frame
function parameters
return address
spilled registers //saved register values
local vars

-frame pointer points to bottom of frame - easier to refer to variables based on offset from frame
pointer than offset from frame pointer

Caller vs Callee-Save
-functions share the same set of registers

Problem: a function might modify registers that its caller is still using
Solution: same values of registers on stack

-caller save - the calling function saves register to stack before executing a function call, after
function call, caller restores previous register values
-callee save - each function saves values of registers to stack before it uses, at end of function,
function restores previous values
Q: which registers are caller saved?
A: Specified by ISA
MIPS
$t0 - $t9 - temporary registers, caller-save
$s0 - $s7 - saved registers - callee-save

-functions often are in different files and are compiled at different times, one function might be
called by many other functions => inter (between) function optimizations are too complicated for
current compilers => only intra (within) function optimizations are made

Which is better?
Leaf function - a function the calls no other functions

-caller save is better because no saves and restores are needed
Liveness - a variable is live across a function call if its values is read after the call
ex:
f() {

a = 1
c = 9
b = g(a, c)
c = b + a //a is live because its value is used after the function call

//c is dead because its previous value is not used after the function call
}

Caller save is better for c because it is dead across function call.

double integrate(double a, double b, double dx, double (*f)(double)) {

double sum = 0;
for(double x = a; x < b; x += dx) {

sum += f(x) * dx;
}

return sum;
}

For loop variables calle-save is better. (ex: x is saved and restored once for callee-save vs once
per iteration for caller-save)

Object Files
-output of the assembler

header - specifies sizes of following parts
text - machine code for instructions
data -contains values for initialized global variables and statics

-two parts: initialized and uninitialized
symbol table - lists globally accessible symbols

-symbol, type
-for globals, functions, externs

relocation table - locations of instructions that depend on variables/functions in other object files
-stores locations of instructions that use absolute addresses
-in table: jump, lw <global/static>, sw <global/static>
-not in table: PC-relative instructions (beq), add, addi, …, lw <stack or heap variable>

debug info

Linker - mergers multiple object files and resolves dependencies
Object file 1, … Object file n
=>
text 1
text 2
…
text n
data 1
data 2
…
data n
=> resolves references, checks for undefined labels, updates instructions in relocation tables
with finalized addresses of symbols they refer to

Floating Point

IEEE 754 Floating point
-idea: use scientific notation
Format:
-|sign bit | 8 bit exponent | 23 bit mantissa|
-base 2 => base is fixed => no need to store it
-all base 2 numbers (except zero) begin with zero => implicit 1 before the mantissa

-use exponent of -127 to represent 0
-has +/- Infinity and not a number (NaN) values
-floating point addition compares exponents => want exponent comparison to be fast

-want to use fast unsigned comparison instead of slower 2's complement comparison
-solution: represent exponent in biased base 127

-represent x as x + 127
=> exponent range: -127 to 128

-Stored value represents: (-1)sign * (1 + 0.mantissa bits) * 2exponent - 127

Multiplication:
-product sign is xor of sign bits
-add exponents
-multiply mantissa (remembering implicit leading 1)
-adjust exponent if needed and normalize mantissa

Addition:
-shift mantissa of number with smaller exponent right while increasing exponent until exponents
are the same (so bits with same order are aligned)
-add resulting mantissa bits
-if addition overflows, renormalize mantissa and update exponent
(More complicated that this)

-value overflows when resulting exponent is too large

Finite State Machines
-set of states
-determines next state based on input and current state
Moore Machine - output determined by only current state
Mealy Machine - output determined by input and current state

-can implement with two tables (details are depend on type of machine)
Table 1: |current state | input 1 | … | input n| address| - address in index in table 2
Table 2: |next state | output 1 | ... | output m|

https://www.h-schmidt.net/FloatConverter/IEEE754.html

